

$$
\begin{aligned}
& \mathrm{R}=\mathrm{V}=\mathrm{P} \\
& \mathrm{M}_{\max }(\text { at fixed end })=\mathrm{Pb} \\
& \mathrm{M}_{\mathrm{x}}(\text { when } \mathrm{x}>\mathrm{a})=\mathrm{P}(\mathrm{x}-\mathrm{a}) \\
& \Delta_{\max }(\text { at free end })=\frac{\mathrm{Pb}^{2}}{6 \mathrm{EI}}(3 \mathrm{~L}-\mathrm{b}) \\
& \Delta_{\mathrm{a}}(\text { at point of load })=\frac{\mathrm{Pb}^{3}}{3 \mathrm{EI}} \\
& \Delta_{\mathrm{x}}(\text { when } \mathrm{x}<\mathrm{a})=\frac{\mathrm{Pb}^{2}}{6 \mathrm{EI}}(3 \mathrm{~L}-3 \mathrm{x}-\mathrm{b}) \\
& \Delta_{\mathrm{x}}(\text { when } \mathrm{x}>\mathrm{a})=\frac{\mathrm{P}(\mathrm{~L}-\mathrm{x})^{2}}{6 \mathrm{EI}}(3 \mathrm{~b}-\mathrm{L}+\mathrm{x})
\end{aligned}
$$

Figure A. 8 - Cantilever Beam - Concentrated Load at Any Point

Figure A. 9 - Beam Fixed at One End, Supported at Other - Uniformly Distributed Load

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{V}_{1}=\frac{\mathrm{Pb}^{2}}{2 \mathrm{~L}^{3}}(\mathrm{a}+2 \mathrm{~L}) \\
& \mathrm{R}_{2}=\mathrm{V}_{2}=\frac{\mathrm{Pa}}{2 \mathrm{~L}^{3}}\left(3 \mathrm{~L}^{2}-\mathrm{a}^{2}\right) \\
& \mathrm{M}_{1}(\text { at point of load })=\mathrm{R}_{1} \mathrm{a} \\
& M_{2}(\text { at fixed end })=\frac{P a b}{2 L^{2}}(a+L) \\
& \mathrm{M}_{\mathrm{x}}(\text { when } \mathrm{x}<\mathrm{a})=\mathrm{R}_{1} \mathrm{x} \\
& \mathrm{M}_{\mathrm{x}}(\text { when } \mathrm{x}>\mathrm{a})=\mathrm{R}_{1} \mathrm{x}-\mathrm{P}(\mathrm{x}-\mathrm{a}) \\
& \Delta_{\max }\left(\text { when } \mathrm{a}<0.4 \mathrm{~L} \text { at } \mathrm{x}=\mathrm{L} \frac{\mathrm{~L}^{2}+\mathrm{a}^{2}}{3 \mathrm{~L}^{2}-\mathrm{a}^{2}}\right)=\frac{\mathrm{Pa}}{3 \mathrm{EI}} \frac{\left(\mathrm{~L}^{2}-\mathrm{a}^{2}\right)^{3}}{\left(3 \mathrm{~L}^{2}-\mathrm{a}^{2}\right)^{2}} \\
& \Delta_{\text {max }}\left(\text { when } \mathrm{a}>0.4 \mathrm{~L} \text { at } x=\mathrm{L} \sqrt{\frac{\mathrm{a}}{2 \mathrm{~L}+\mathrm{a}}}\right)=\frac{\mathrm{Pab}^{2}}{6 \mathrm{EI}} \sqrt{\frac{\mathrm{a}}{2 \mathrm{~L}+\mathrm{a}}} \\
& \Delta_{a}(\text { at point of load })=\frac{\mathrm{Pa}^{2} \mathrm{~b}^{3}}{12 \mathrm{EIL}^{3}}(3 \mathrm{~L}+\mathrm{a}) \\
& \Delta_{\mathrm{x}}(\text { when } \mathrm{x}<\mathrm{a})=\frac{\mathrm{Pa}^{2} \mathrm{x}}{12 \mathrm{EIL}^{3}}\left(3 \mathrm{aL}^{2}-2 \mathrm{Lx}^{2}-\mathrm{ax}^{2}\right) \\
& \Delta_{\mathrm{x}}(\text { when } \mathrm{x}>\mathrm{a})=\frac{\mathrm{Pa}}{12 \mathrm{EIL}^{3}}(\mathrm{~L}-\mathrm{x})^{2}\left(3 \mathrm{~L}^{2} \mathrm{x}-\mathrm{a}^{2} \mathrm{x}-2 \mathrm{a}^{2} \mathrm{~L}\right)
\end{aligned}
$$

Figure A. 10 - Beam Fixed at One End, Supported at Other - Concentrated Load at Any Point

Figure A. 11 - Beam Fixed at Both Ends - Uniformly Distributed Loads

